新闻与活动 活动信息

Chemistry Colloquium | Prof. Shang-Da Jiang 蒋尚达: Coherent Spin Manipulation in Magnetic Molecules

时间

2022年9月15日(周四)
下午16:00-17:30

地点

西湖大学云谷校区E10-201教室

主持

西湖大学理学院PI 孙磊 博士

受众

全体师生

分类

学术与研究

Chemistry Colloquium | Prof. Shang-Da Jiang 蒋尚达: Coherent Spin Manipulation in Magnetic Molecules

时间:2022年9月15日(周四)下午16:00-17:30

Time:16:00-17:30, Thursday, September 15th, 2022

主持人: 西湖大学理学院PI 孙磊 博士

Host: Dr. Lei Sun, PI of School of Science, Westlake University

地址:西湖大学云谷校区E10-201教室

Venue: Room E10-201, Yungu Campus, Westlake University


蒋尚达 教授

华南理工大学自旋科技研究院,广州市天河区五山路381号

Prof. Shang-Da Jiang

Spin-X Institute, South China University of Technology, No. 381, Wushan Road, Tianhe District, Guangzhou, China

E-mail:  jiangsd@scut.edu.cn

主讲人/Speaker

蒋尚达,华南理工大学化学与化工学院教授,2011年在北京大学化学学院获得博士学位,获得2013年全国百篇优秀博士论文。2011-2014年在德国斯图加特大学进行博士后研究,洪堡学者,2014-2015年在法国国家强磁场实验室进行博士后研究,2015-2020年于北京大学化学学院无机化学所任副研究员,2020年9月起受聘于华南理工大学自旋科技研究院和化学与化工学院,任全职教授。2016年入选中国科协青年人才托举工程,同年当选中国科协第九届全国委员会委员和科普专委会委员,2018年获得基金委优秀青年科学基金资助,结题评优,2022年获得亚洲配位化学会新星奖和日本配位化学会国际创新奖。主要从事分子磁性和电子顺磁共振谱学研究,研究磁性分子的量子相干行为及电、光和磁等对分子自旋的相干操纵方法。

Prof. Shang-Da Jiang is a full professor in the Spin-X Institute at South China University of Technology. He has obtained the PhD in the College of Chemistry and Molecular Engineering at Peking University in 2011, and his PhD thesis was awarded National Excellent Doctoral Dissertation of China in 2013. He has obtained the National Science Fund of China for Excellent Young Scholars in 2018, and the RIGAKU-ACCC Rising Star award, as well as the International Award for Creative Work of Japan Society of Coordination Chemistry in 2022. Prof. Jiang's present research interests are the quantum coherence manipulation of magnetic molecules and EPR spectroscopy. He has published more than 60 research papers of over 4600 citations and H-index of 30.


讲座摘要/Abstract:

量子信息技术可以通过量子力学规律实现全新的信息处理和传输模式,是一项对传统技术体系产生冲击、进行重构的重大颠覆性技术创新,将引领新一轮科技革命和产业变革方向。化学设计可以调控磁性分子的量子行为、获得更大的量子态空间。因此研究磁性分子的量子相干性,对其进行新颖、复杂的量子相干操控,尝试使用磁性分子进行量子计算,是量子信息材料化学的重要内容。本报告将首先介绍“磁性分子量子相干操控”研究的相关基本概念和研究思路,并介绍报告人提出的“笼状结构保护方案”增强磁性分子量子相干性及拓展性,介绍我们使用瞬态电场、激光、微波脉冲等对磁性分子进行高效相干操控的具体实验,包括量子启停器、量子芝诺效应、量子相位干涉、量子几何相位、电子自旋旋度以及可纠错的量子DJ算法等,彰显了磁性分子比传统量子系统更为丰富的物理内涵。


Quantum information processing has been drawing massive attention for its capability to essentially overperform traditional computing in a number of vital situations. While some candidates of quantum information materials might seem much better developed at the present stage, magnetic molecules show some incomparable advantages owing to the extensive chemical toolkit at hand. Their spectra can be easily engineered at energy scales ranging from radiofrequency to ultraviolet, and the dimensionality of their Hilbert spaces can be easily expanded by covalent bonding, self-assembly or simply incorporating high-spin moieties. In this talk, the importance of conducting sophisticated coherence manipulation on magnetic molecules from our group will be introduced.


After introducing the basic concepts and ideas, I will first illustrate how geometric phase gate manipulation is made possible in the molecular ground state electron spin with the help of "cage protection" of quantum coherence and energy level addressability raised by liquid crystal-induced molecular orientation.


By resolving the role of transient electric field in manipulating different terms in the molecular spin Hamiltonian, we are able to implement a wider variety of quantum state manipulations on a qubit, and potentially qudit basis, and demonstrate the Deustch-Jozsa algorithm,


To demonstrate the ability to coherently manipulate a qudit's state, I will report our work using photoexcitation of a fullerene molecule to generate a pseudo-pure qutrit state which can be a start point for arbitrary state manipulation in its whole Hilbert space. The quantum phase interference in this molecular triplet shows that multi-level molecules have richer physical behaviour than mere qubits.


Finally, we can conclude that developing novel or complexed schemes of molecular quantum state operations has the meaning of both introducing the power of chemistry to quantum information applications and helping chemists to recognize their systems from a quantum point of view.


References

[1] Hu, Z.; Dong, B.-W.; Liu, Z.; Liu, J.-J.; Yu, C.; Xiong, J.; Shi, D.-E.; Wang, Y.; Wang, B.-W.; Ardayan, A.; Shi, Z.*; Jiang, S.-D.*; Gao, S.*, J. Am. Chem. Soc. 2018, 140, 1123-1130.

[2] Liu, Z.; Wang, Y.-X.; Fang, Y.-H.; Qin, S.-X.; Wang, Z.-M.; Jiang, S.-D.*; Gao, S., Natl. Sci. Rev. 2020, 7, 1557-1563.

[3] Wang, Y.-X.; Liu, Z.; Fang, Y.-H.; Zhou, S.*; Jiang, S.-D.*; Gao, S., npj Quan. Inf. 2021, 7, 32.

[4] Zhou, S.; Yuan, J.; Wang, Z.-Y.; Ling, K.; Fu, P.-X.; Fang, Y.-H.; Wang, Y.-X.; Liu, Z.; Porfyrakis, K.*; Briggs, A.; Gao, S.; Jiang, S.-D.*, Angew. Chem. Int. Ed. 2022, 61, e202115263

[5] Fang, Y.-H.; Liu, Z.; Zhou, S.; Fu, P.-X.; Wang, Y.-X.; Wang, Z.-Y.; Wang, Z.-M.; Gao, S.; Jiang, S.-D.*, J. Am. Chem. Soc. 2022, 144, 8605-8612


讲座联系人/Contact:

理学院,廖长丹,邮箱:liaochangdan@westlake.edu.cn

School of Science, Changdan Liao Email: liaochangdan@westlake.edu.cn